Seurat基本分析流程
参考链接: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html 建立 Seurat 对象 示例数据为10X Genomics的外周血单个核细胞(PBMC)数据集,含有2700个单细胞,使用Illumina NextSeq...
cellranger count 流程
准备工作:下载参考基因组和数据集 下载参考基因组 # 新建一个ref文件夹存放参考基因组 cd yard mkdir ref cd ref # 下载human GRCH38,大约11G wget https://cf.10xgenomics.com/supp/cell-exp...
cellranger的安装
新建一个文件夹 打开linux终端,运行 mkdir yard 验证一下工作目录 pwd /home/vamond/yard 进入该目录,新建apps文件夹,用于存放cellreanger cd /mnt/home/user.name/yard mkdir apps cd apps ...
使用singleR预测细胞类型
SingleR是用于单细胞RNA测序(scRNAseq)数据的自动注释方法(Aran et al.2019)。给定具有已知标签的样本(单细胞或RNAseq)参考数据集,它将基于与参考数据的相似性标记测试数据集中的新细胞...
通过注释文件计算线粒体序列比例
经验证,人类样本的单细胞分析使用seurat教程的方法计算线粒体序列比例与此方法结果一致,但对于其他物种,建议使用此方法。 使用注释文件生成线粒体计数指标 我们将使用AnnotationHub,它允许...
整合后的细胞标记物鉴别-HBC lesson 9
目标: 确定每个类群的基因标记物 使用标记物识别每个类群的细胞类型 根据细胞类型标记物来判断是否需要重新分组,或许需要合并或拆分聚类的类群 挑战: 对结果的过度解读 结合不同类型的标记物...
细胞聚类的质控-HBC lesson 8
学习内容 评估是否存在聚类的假象 用PCA和UMAP图来确定聚类的质量,并了解何时需要重新聚类 评估已知的细胞类型标志物以假设集群的细胞类型身份 目标 确定集群是否代表真正的细胞类型或由于生物...
聚类分析-HBC lesson 7
学习内容 学会选择合适的PCs用于聚类分析 聚类的方法 目标 产生细胞类型特异性聚类,并使用已知的细胞类型标记基因来确定聚类的身份。 确定集群是否代表真正的细胞类型或由于生物或技术差异而产...