排序
scRNA-seq数据整合Introduction
Seurat不仅可以校正实验的批次效应,还能跨平台整合数据,例如将10x单细胞数据、BD单细胞数据和SMART单细胞数据整合在一起;也能整合单细胞多组学数据,例如将单细胞ATAC、空间转录组与单细胞转...
QC(质控)-HBC lesson 4
QC(质控)-HBC lesson 4 在这一章你将会学到: 构建质控指标并使用相关图像可视化数据质量 估算质控指标并设置阈值去除低质量的细胞 单细胞数据分析流程的每个步骤都有这自己的目标和挑战。对...
cellranger的安装
新建一个文件夹 打开linux终端,运行 mkdir yard 验证一下工作目录 pwd /home/vamond/yard 进入该目录,新建apps文件夹,用于存放cellreanger cd /mnt/home/user.name/yard mkdir apps cd apps ...
归一化与主成分分析-HBC lesson 5
在我们我们获得高质量的单细胞数据后,单细胞RNA测序分析工作流程的下一步是进行聚类。聚类的目标是将不同的细胞类型分离成独特的细胞群。为了执行聚类,我们需要确定细胞间表达差异最大的基因...
cellranger count 流程
准备工作:下载参考基因组和数据集 下载参考基因组 # 新建一个ref文件夹存放参考基因组 cd yard mkdir ref cd ref # 下载human GRCH38,大约11G wget https://cf.10xgenomics.com/supp/cell-exp...
Seurat安装
从CRAN安装最新版 4.0+seurat需要R也是4.0+的版本 Seurat is available on CRAN for all platforms. To install, run: # Enter commands in R (or R studio, if installed) install.packages(...
归一化并去除不需要的变异-HBC lesson 6.1
在我们可以聚类细胞并识别不同的潜在细胞类型之前,我们还有几个步骤。我们的数据集有两个样本来自两个不同的条件(控制和刺激),所以整合这些样本,以更好地进行比较可能是有帮助的。我们需要...
生信分析环境搭建–conda+jupyter
本文介绍了如何使用conda和jupyter notebook搭建生信分析环境,包括安装配置conda、jupyter notebook、scanpy等工具,并演示了在jupyter notebook中调用不同环境的方法。
Seurat基本分析流程
参考链接: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html 建立 Seurat 对象 示例数据为10X Genomics的外周血单个核细胞(PBMC)数据集,含有2700个单细胞,使用Illumina NextSeq...
整合-HBC lesson 6.2
本文主要是翻译,用作参考,还是要看GitHub上的英文原版学习 目标 对于不同条件下的样本,将相同类型的细胞对齐到一起 挑战 对准类似的细胞类型,这样我们就不会因为样品、条件、模式或批次的不...