R共23篇
Seurat基本分析流程-香草杏仁

Seurat基本分析流程

参考链接: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html 建立 Seurat 对象 示例数据为10X Genomics的外周血单个核细胞(PBMC)数据集,含有2700个单细胞,使用Illumina NextSeq...
Vamond的头像-香草杏仁Vamond4年前
068500
使用pheatmap可视化marker基因-香草杏仁
5

使用pheatmap可视化marker基因

在完成单细胞分析基本流程之后,我们获得了各个细胞聚类和相应的marker基因,有多种方式可以可视化marker基因的表达量,seurat包中自带的DoHeatmap()、VlnPlot()以及DotPlot()函数可以很方便的...
Vamond的头像-香草杏仁Vamond4年前
063730
scRNA-seq数据整合Introduction-香草杏仁

scRNA-seq数据整合Introduction

Seurat不仅可以校正实验的批次效应,还能跨平台整合数据,例如将10x单细胞数据、BD单细胞数据和SMART单细胞数据整合在一起;也能整合单细胞多组学数据,例如将单细胞ATAC、空间转录组与单细胞转...
Vamond的头像-香草杏仁Vamond4年前
461800
对Seurat对象使用harmony方法整合-香草杏仁

对Seurat对象使用harmony方法整合

Harmony方法在2019年发表在上面nature methods, harmony算法与其他整合算法相比的优势: 整合数据的同时对稀有细胞的敏感性依然很好; 省内存; 适合于更复杂的单细胞分析实验设计,可以比较来...
Vamond的头像-香草杏仁Vamond4年前
059290
关于“数据的维度”(dims参数)的选择-香草杏仁

关于“数据的维度”(dims参数)的选择

关于“数据的维度”(dims参数)的选择 Created time: Apr 13, 2021 12:07 PM Tags: R, Seurat, scRNA-seq 完成PCA之后,我们获得了该数据集的所有主成分(PCs)信息,但是如何决定纳入多少个主成...
Vamond的头像-香草杏仁Vamond4年前
059180
使用singleR预测细胞类型-香草杏仁

使用singleR预测细胞类型

SingleR是用于单细胞RNA测序(scRNAseq)数据的自动注释方法(Aran et al.2019)。给定具有已知标签的样本(单细胞或RNAseq)参考数据集,它将基于与参考数据的相似性标记测试数据集中的新细胞...
Vamond的头像-香草杏仁Vamond4年前
056960
分析准备与读取数据-HBC lesson 3-香草杏仁

分析准备与读取数据-HBC lesson 3

本篇教程将会帮助你理解如何获得单细胞RNA测序实验中的数据。 基因表达定量完成之后,我们需要将这些数据导入R中,以生成可用于执行质控的矩阵。在本课中,我们将讨论计数数据可被导入的格式,...
Vamond的头像-香草杏仁Vamond4年前
053470
归一化并去除不需要的变异-HBC lesson 6.1-香草杏仁

归一化并去除不需要的变异-HBC lesson 6.1

在我们可以聚类细胞并识别不同的潜在细胞类型之前,我们还有几个步骤。我们的数据集有两个样本来自两个不同的条件(控制和刺激),所以整合这些样本,以更好地进行比较可能是有帮助的。我们需要...
Vamond的头像-香草杏仁Vamond4年前
053270
“归一化”与“标准化”-香草杏仁

“归一化”与“标准化”

参考链接: https://mp.weixin.qq.com/s/6ioR3JE0wKg6M-YAsLBcTA 关于归一化和标准化的翻译看了很多中文资料,发现还是有争议的,在seurat中主要是两个函数:NormalizeData()和ScaleData() ,其...
Vamond的头像-香草杏仁Vamond4年前
053110
QC(质控)-HBC lesson 4-香草杏仁

QC(质控)-HBC lesson 4

QC(质控)-HBC lesson 4 在这一章你将会学到: 构建质控指标并使用相关图像可视化数据质量 估算质控指标并设置阈值去除低质量的细胞 单细胞数据分析流程的每个步骤都有这自己的目标和挑战。对...
Vamond的头像-香草杏仁Vamond4年前
052780