通过注释文件计算线粒体序列比例
经验证,人类样本的单细胞分析使用seurat教程的方法计算线粒体序列比例与此方法结果一致,但对于其他物种,建议使用此方法。 使用注释文件生成线粒体计数指标 我们将使用AnnotationHub,它允许...
scRNA-seq简介-HBC lesson 1
参考链接: https://github.com/hbctraining/scRNA-seq_online/blob/master/lessons/01_intro_to_scRNA-seq.md 我们为什么需要单细胞RNA测序 人类各种组织之间细胞的类型,状态和相互作用差异巨...
对Seurat对象使用harmony方法整合
Harmony方法在2019年发表在上面nature methods, harmony算法与其他整合算法相比的优势: 整合数据的同时对稀有细胞的敏感性依然很好; 省内存; 适合于更复杂的单细胞分析实验设计,可以比较来...
从原始数据到表达矩阵-HBC lesson 2
根据所使用的建库方法,单细胞的RNA序列(也称为读取(reads)或标签(tags))将从转录本的3'端(或5'端)(10X Genomics,CEL-seq2,Drop-seq,inDrops)或全长转录本(Smart-seq)获得。 参...
使用singleR预测细胞类型
SingleR是用于单细胞RNA测序(scRNAseq)数据的自动注释方法(Aran et al.2019)。给定具有已知标签的样本(单细胞或RNAseq)参考数据集,它将基于与参考数据的相似性标记测试数据集中的新细胞...